Can near-edge structure of the $\mathrm{Bi}_{L_{3}}$ edge determine the formal valence states of Bi ?

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2006 J. Phys.: Condens. Matter 188029
(http://iopscience.iop.org/0953-8984/18/34/014)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 28/05/2010 at 13:23

Please note that terms and conditions apply.

Can near-edge structure of the $\mathrm{Bi}_{\mathbf{L}}$ edge determine the formal valence states of Bi ?

Nan Jiang and John C H Spence
Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504, USA

Received 8 May 2006, in final form 3 July 2006
Published 11 August 2006
Online at stacks.iop.org/JPhysCM/18/8029

Abstract

We analyse the manner in which local atomic structure affects the identification of Bi valence states in the x-ray absorption near-edge structure (XANES) of the $\mathrm{Bi} \mathrm{L}_{3}$ edge, by comparing simulations of the $\mathrm{Bi} \mathrm{L}_{3}$ edges in various polymorphs of $\mathrm{Bi}_{2} \mathrm{O}_{3}, \mathrm{NaBiO}_{3}$ and $\mathrm{Ag}_{25} \mathrm{Bi}_{3} \mathrm{O}_{18}$. We find that while the XANES is certainly sensitive to the ionicity of Bi , it is better described in terms of its sensitivity to the local bond lengths and coordination associated with the valence states of Bi.

1. Introduction

The valence state of Bi in bismuth-containing crystals and glasses has attracted scientific interest for many years, due to its important role in metal-to-insulator transition [1], superconductivity [2] and photoluminescence [3]. In experiments, x-ray absorption near-edge structure (XANES) of the $\mathrm{Bi} \mathrm{L}_{3}$ edge has been extensively used to determine the valence state of Bi in various crystals and glasses [4-21]. These measurements usually require a comparison with standard samples (e.g. $\mathrm{Bi}_{2} \mathrm{O}_{3}$ and NaBiO_{3}) of known oxidation states. This assumes that the differences between Bi_{3} XANES are due to differences in Bi valence state, without theoretical justification.

It is known that the XANES, as well as electron energy-loss near-edge structure (ELNES), is sensitive to both local structure and chemistry. It has been general practice to use XANES and ELNES to study valence states, such as those in transition metal oxides [22, 23]. In some cases, however, XANES and ELNES are clearly more sensitive to local structure than to the valence state. For example, B has the formal valence B^{3+} in oxides, regardless of its threefold or fourfold coordination to O. However, the XANES and ELNES of the B K edge are significantly different in these two coordination forms, and this has been widely used as a fingerprint to distinguish the local structural environment around the B [24, 25]. In the heavy element oxide TeO_{2}, the local structure gradually evolves from a $\left[\mathrm{TeO}_{4}\right]$ trigonal bipyramid to a $\left[\mathrm{TeO}_{3}\right]$ trigonal pyramid when other metal oxides (e.g. $\mathrm{Nb}_{2} \mathrm{O}_{5}$) are added, although the formal valence of Te remains Te^{4+}. This structural change can be identified via the disappearance of a small peak within 10 eV of the threshold of the Te_{3} edge [26]. Therefore, it is necessary

Table 1. A list of $\mathrm{Bi}-\mathrm{O}$ distances in the first shell in various compounds. The data in the parentheses are excluded from calculating the average bonding distances. $\mathrm{o}-\mathrm{Bi}_{2} \mathrm{O}_{3}$ represents the orthorhombic phase.

		Bi-O distances (\AA) in the first shell	Average
$\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}[33]$	$(\mathrm{Bi1})$	$2.075,2.174,2.209,2.548,2.636,(3.244)$	2.329
	(Bi2)	$2.136,2.224,2.290,2.477,2.531,(2.796)$	2.332
$\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}[34]$		$2.096,2.128,2.253,2.463,(2.720),(2.978)$	2.235
$\gamma-\mathrm{Bi}_{2} \mathrm{O}_{3}[31]$	$(\mathrm{Bi1})$	$2.087,2.234,2.283,2.595,2.622,(3.117)$	2.364
	(Bi2)	$1.910,1.910,1.910,1.910$	1.910
$\delta-\mathrm{Bi}_{2} \mathrm{O}_{3}[31]$		$2.451,2.451,2.451,2.451$	2.451
$0-\mathrm{Bi}_{2} \mathrm{O}_{3}[32]$		$2.082,2.170,2.173,2.489,2.569,(3.473)$	2.297
$\mathrm{NaBiO}_{3}[35]$		$2.094,2.094,2.094,2.137,2.137,2.137$	2.116
$\mathrm{Ag}_{25} \mathrm{Bi}_{3} \mathrm{O}_{18}[36]$	$(\mathrm{Bi1})$	$2.207,2.207,2.207,2.507,2.507,2.507$	2.357
	$(\mathrm{Bi} 2)$	$2.130,2.130,2.130,2.130,2.130,2.130$	2.130

to justify theoretically whether the XANES of the $\mathrm{Bi} \mathrm{L}_{3}$ edge is more sensitive to its formal valence state or to the structural environment around Bi .

In this work, we discuss how local structures affect the identification of Bi valence states in the XANES of the Bi_{3} edge, by comparing simulations of the $\mathrm{Bi} \mathrm{L}_{3}$ edges in various polymorphs of $\mathrm{Bi}_{2} \mathrm{O}_{3}, \mathrm{NaBiO} \mathrm{N}_{3}$ and $\mathrm{Ag}_{25} \mathrm{Bi}_{3} \mathrm{O}_{18}$.

2. Theoretical calculations

The XANES simulations were carried out using a real-space multiple scattering (MS) approach, as encoded in the FEFF8 algorithm [27]. The wavefunctions were obtained by solving the Dirac equation self-consistently in the relativistic spinor representation using muffin-tin potentials. For the DOS calculations, the ground state von Barth-Hedin exchange-correlation potential [28] was used. The Hedin-Lundqvist energy-dependent self-energy correction [29] was added to the SCF total energy in the simulations of the XANES. The core hole effect is also included using the 'frozen core hole' approximation. The radius of the cluster for multiple scattering during the self-consistency loop is $7 \AA$, which contains about 100 atoms. The maximum values of the angular momentum basis are $l_{\max }=1$ for oxygen and 3 for bismuth. The maximum value of the overlap for the muffin tins is 10%.
$\mathrm{Bi}_{2} \mathrm{O}_{3}$ has several polymorphs, including the $\alpha-, \beta-, \gamma-, \delta$-, and o- $-\mathrm{Bi}_{2} \mathrm{O}_{3}$ phases [30-32]. Accordingly, Bi in these polymorphs should bear the formal valence charge of Bi^{3+}.
$\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$: This is the most stable form at room temperature. Bismuth has two inequivalent positions in $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$: both are considered to be fivefold coordinated to O . The coordination surrounding Bi may be described as a distorted octahedron, with one of its corners removed. The $\mathrm{Bi}-\mathrm{O}$ bond distances are listed in table 1 [33].
$\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$: Although six O surround Bi in this structure, two of them are almost $3 \AA$ away from Bi (table 1) [34]. Therefore, the O polyhedron surrounding Bi may be described as a pseudo-trigonal bipyramid.
$\gamma-\mathrm{Bi}_{2} \mathrm{O}_{3}$: This is isomorphous with the bcc $\mathrm{Bi}_{12} \mathrm{GeO}_{20}$ [31]. The Bi atoms in pure $\gamma-\mathrm{Bi}_{2} \mathrm{O}_{3}$ occupy positions which are tetrahedrally coordinated to O , and normally occupied by the impurity (e.g. Ge) ion. Therefore, there are two inequivalent Bi atoms in $\gamma-\mathrm{Bi}_{2} \mathrm{O}_{3}$: one is fivefold coordinated to O , resembling that in $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$; another is fourfold coordinated to O . The $\mathrm{Bi}-\mathrm{O}$ bond distances are listed in table 1 .

Figure 1. Comparison of calculations for $\mathrm{Bi} \mathrm{L}_{3}$ edges in $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ and NaBiO_{3}.
$\delta-\mathrm{Bi}_{2} \mathrm{O}_{3}$: This cubic δ form is the high-temperature phase. There is some controversy concerning the structure and space group [30,31]. As regards the local structure of Bi, however, there is general agreement that Bi is fourfold coordinated to O with a relatively long $\mathrm{Bi}-\mathrm{O}$ distance (table 1). In this work, we used the lattice and atom position parameters given by Medernach [30].
$o-\mathrm{Bi}_{2} \mathrm{O}_{3}$: This is an orthorhombic phase. The local environment surrounding Bi can be derived from the fluorite structure, in which three O atoms at the corner of the cube are removed and the remaining five O atoms are displaced [32].

The calculations were also carried out for two other structures: $\mathrm{NaBiO}_{3}\left(\mathrm{Bi}^{5+}\right)$ and $\mathrm{Ag}_{25} \mathrm{Bi}_{3} \mathrm{O}_{18}\left(\mathrm{Bi}^{3+}\right.$ and $\left.\mathrm{Bi}^{5+}\right)$. The crystal structure of NaBiO_{3} consists of BiO_{6} octahedra and NaO_{6} octahedra, and the mean $\mathrm{Bi}-\mathrm{O}$ distance is about $2.12 \AA$ [35]. $\mathrm{Ag}_{25} \mathrm{Bi}_{3} \mathrm{O}_{18}$ contains both Bi^{3+} and $\mathrm{Bi}^{5+}[36] . \mathrm{Bi}^{3+}$ is in a distorted O octahedron, with three O at a distance of $2.21 \AA$ and the other three at a distance of $2.51 \AA . \mathrm{Bi}^{5+}$ lies almost within a regular O octahedron, at an equal distance of $2.13 \AA$, which is in agreement with the other Bi^{5+} bismuth oxides, such as NaBiO_{3}.

3. Results and discussion

Overall, the XANES of the Bi_{3} edge consists of a main peak with delayed maximum intensity [4-21]. There are three major features in this broad peak (indicated A, B and C). All these features have been used to identify the formal valence states of Bi [4-21]. For NaBiO_{3}, the small peak A is significantly stronger in comparison with that for $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$, where it is only a slight bump. Therefore, it is always considered to be characteristic of Bi^{5+} [4-21]. There is also a shift of about 2 eV to higher energy in the general position of the absorption edge for NaBiO_{3}, compared to $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$. As a result, the energies of peaks B and C for NaBiO_{3} are higher than those for $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$. Figure 1 compares simulations of the $\mathrm{Bi} \mathrm{L}_{3}$ edge in $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ and NaBiO_{3}, which are often used as standards for Bi^{3+} and Bi^{5+}, respectively. The calculated $\mathrm{Bi} \mathrm{L}_{3}$ edge in $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ is the average of two inequivalent sites. In our calculations, all these characteristics are qualitatively reproduced, although differences exist. For NaBiO_{3}, the major discrepancy is as regards the position of peak C . For $\mathrm{Bi}_{2} \mathrm{O}_{3}$, the calculated intensity of peak A is slightly stronger than those from experiments. Both effects are probably due to the use of muffin-tin potentials

Figure 2. Comparison of the calculated $\mathrm{Bi} \mathrm{L}_{3}$ edge for Bi^{3+} and Bi^{5+} in $\mathrm{Ag}_{25} \mathrm{Bi}_{3} \mathrm{O}_{18}$.
in the calculations [37]. Later, it will be shows that slight variations in $\mathrm{Bi}-\mathrm{O}$ bond lengths may also cause these discrepancies. Nevertheless, for the purposes of distinguishing the formal valence states between Bi^{3+} and Bi^{5+}, our agreement between calculation and experiment is generally satisfactory.

Differences between Bi^{3+} and Bi^{5+} have also been confirmed by calculations for a single compound $\mathrm{Ag}_{35} \mathrm{Bi}_{3} \mathrm{O}_{18}$, in which Bi has both $3+$ and $5+$ formal valence states [36]. The results are compared in figure 2. This shows that peak A is much stronger for Bi^{5+} than for Bi^{3+}, and the general position of the absorption edge shifts to a higher energy for the former. These results are consistent with the results for $\mathrm{Bi}_{2} \mathrm{O}_{3}$ and NaBiO_{3} in figure 1. Interestingly, the two types of Bi have similar coordination, but different mean $\mathrm{Bi}-\mathrm{O}$ distances (table 1). The mean $\mathrm{Bi}-\mathrm{O}$ distance of Bi^{5+} in $\mathrm{Ag}_{25} \mathrm{Bi}_{3} \mathrm{O}_{18}$ is $2.13 \AA$, which is about the same value as for the other Bi^{5+} oxides: $2.12 \AA$ in NaBiO_{3} and $\mathrm{AgBiO}_{3}, 2.10 \AA$ in $\mathrm{KBiO}_{3}, 2.11 \AA$ in LiBiO_{3}, and $2.10 \AA$ in $\mathrm{MgBi}_{2} \mathrm{O}_{6}$. In contrast, the mean $\mathrm{Bi}-\mathrm{O}$ distance of Bi^{3+} is about $2.36 \AA$, which is about the same as that in $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}(2.33 \AA)$. Since no charge states were imposed on the Bi in the calculations, we believe that the differences in the calculated spectra in figure 2 are the result of different $\mathrm{Bi}-\mathrm{O}$ distances.

Peak A was always assigned to the $2 \mathrm{p}^{3 / 2} \rightarrow 6$ s transition, since Bi 6 s is considered to be empty in Bi^{5+}. By contrast, Bi 6 s is filled in Bi^{3+}, and thus this bump is absent. The assignment of the $\mathrm{Bi} \mathrm{L}_{3}$ edge in these compounds is examined in our calculations in figure 3, in which the s and d DOS (density of states) projected on Bi in both NaBiO_{3} and $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ are compared. It is seen that a sharp peak (indicated by arrows in figure 3) occurs near the band gap in the empty s states for NaBiO_{3}, while it is weak and broad for $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$. However, the Bi 6 s state is not completely filled in $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$. There are comparable intensities of the Bi 6 s and 6 d empty state DOS near the band gap region, which are both responsible for a small bump in the calculated spectrum for $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$. The other features of the $\mathrm{Bi} \mathrm{L}_{3}$ edge (peak B and C) are exclusively due to the $\mathrm{Bi} 2 \mathrm{p}^{3 / 2} \rightarrow 6 \mathrm{~d}$ transition. For NaBiO_{3}, the gap between the occupied and empty d DOS is quite large ($\sim 6-8 \mathrm{eV}$), and the empty 6 s is in the middle of the gap. By contrast, the corresponding gap is very small in $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$. As a result, the edge and the maximum of the main peak (due to transitions to $\mathrm{Bi} d$ states) are about 2 eV lower for NaBiO_{3} than for $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$. In summary, the XANES of the Bi_{3} edge is largely determined by the empty Bi d DOS, while the empty Bi s DOS only makes contributions in the onset region.

Figure 3. Comparison of the electronic partial DOS of $\mathrm{Bi} s$ and d orbitals in $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ and NaBiO_{3}.

Figure 4. Comparison of the calculated $\mathrm{Bi} \mathrm{L}_{3}$ edge in artificial $\left(\mathrm{Na}_{0.5} \mathrm{Mg}_{0.5}\right) \mathrm{BiO}_{3}$ (solid line) with that in NaBiO_{3} (dotted line).

In practice, it is always assumed that the gradual change of peak A at the onset region is induced by the change in the formal valence state of Bi [4-21]. Doping electrons in NaBiO_{3} would fill the empty Bi 6 s states, and thus reduce the intensity of peak A . On the other hand, doping holes in $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ would increase the intensity of peak A. Some researchers have also attempted to quantify the Bi valence from the intensity variation of peak A , under the assumption that there is no interaction between the Bi 6 s and 6 d orbits [20]. To justify this practice, we also carried out calculations for an artificial cluster of NaBiO_{3}, in which half of the Na atoms are randomly replaced by Mg (i.e. $\mathrm{Na}_{0.5} \mathrm{Mg}_{0.5} \mathrm{BiO}_{3}$) without change of structure parameters. The result is compared with the calculation for NaBiO_{3} in figure 4. It shows little difference between these two calculated spectra. The slight shift in energy is probably due to the shift of Fermi energy.

As we know, doping may also cause changes of lattice parameters. To show the relationship between the XANES of the $\mathrm{Bi} \mathrm{L}_{3}$ edge and the $\mathrm{Bi}-\mathrm{O}$ bond distances, we have carried out calculations on modified structural models of $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ and NaBiO_{3}, in which the lattice parameters are slightly decreased and increased, respectively. The results are shown in

Figure 5. Variation of the $\mathrm{Bi} \mathrm{L}_{3}$ edge with bond distances in $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ and NaBiO_{3}. The arrows indicate the trend of decreasing (upper panel) and increasing (lower panel) bond length.
figure 5. It is seen that a slightly decreasing $\mathrm{Bi}-\mathrm{O}$ bond distance in $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ results in both peaks B and C shifting toward higher energy, while a slightly increasing $\mathrm{Bi}-\mathrm{O}$ bond distance in NaBiO_{3} shifts peak C toward lower energy. This is generally consistent with Natoli's rule that the peak locations in energy are inversely correlated with the bond length [38].

Finally, figure 6 also compares our calculations for the various polymorphs of $\mathrm{Bi}_{2} \mathrm{O}_{3}$. In these polymorphs, all the Bi should have the same formal valence charge, Bi^{3+}, except Bi 1 in $\gamma-\mathrm{Bi}_{2} \mathrm{O}_{3}$. However, the differences between the XANES among the Bi^{3+} polymorphs are obvious, including the different intensities of the small bump A, as well as the general positions of the absorption edge and the position of peak C. In $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$, for example, the two Bi sites (Bi 1 and Bi 2) have slightly different local structural environments. As shown in table 1 , the average $\mathrm{O}-\mathrm{Bi} 1$ bond distance is slightly smaller than that of $\mathrm{O}-\mathrm{Bi} 2$. As shown in figure 6 , the difference in calculated L_{3} edge between Bi 1 and Bi 2 is not negligible, although all the Bi in $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ is considered to be Bi^{3+}. The small bump in Bil is more visible in the region of peak A by comparison with that of Bi 2 . This small bump cannot be misinterpreted as the peak A of Bi^{5+}, but it can definitely induce errors if quantifying valence is attempted. Additionally, the position of peak C of Bi1 shifts slightly toward higher energy relative to that of Bi2. Therefore, one should be cautious when using the shifts of peaks B and C to identify the valence states of Bi .

On closer inspection, we see that the higher the energy of peak C , the more intense the small bump A becomes. As regards the position of peak C, it apparently increases in the sequence $\delta-\mathrm{Bi}_{2} \mathrm{O}_{3}, \gamma-\mathrm{Bi}_{2} \mathrm{O}_{3}$ (Bi1), $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}(\mathrm{Bi} 2), \alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}(\mathrm{Bi} 1), \beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ and o- $-\mathrm{Bi}_{2} \mathrm{O}_{3}$. By contrast, the mean $\mathrm{Bi}-\mathrm{O}$ distance decreases in the same manner in these polymorphs (table 1). This suggests that the XANES of the Bi L_{3} edge depends on the near-neighbour distances, as well as on the coordination. Small variation of the local structure can alter the valence state significantly. Therefore, the concept of formal valence charge of Bi is an oversimplified view of the density of states for valence electrons [6].

The mean $\mathrm{Bi}-\mathrm{O}$ distance for Bi 2 is much shorter than that of Bi 1 in $\gamma-\mathrm{Bi}_{2} \mathrm{O}_{3}$ (table 1). It has been suggested that Bi 2 is most likely to $\mathrm{be} \mathrm{Bi}^{5+}$ in this polymorph [39]. However, previous attempts to verify its existence were unsuccessful [30]. In our calculations (figure 6), the differences between the $\mathrm{Bi} \mathrm{L}_{3}$ edges around these two different Bi are very similar to the

Figure 6. Comparison of calculated $\mathrm{Bi} \mathrm{L}_{3}$ edges in various $\mathrm{Bi}_{2} \mathrm{O}_{3}$ polymorphs. For α - and $\gamma-\mathrm{Bi}_{2} \mathrm{O}_{3}$, the dotted and chain lines represent the inequivalent sites Bil and Bi 2 , respectively. The vertical lines indicate the positions of peak C .
differences found in calculations for $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}\left(\mathrm{Bi}^{3+}\right)$ and $\mathrm{NaBiO}_{3}\left(\mathrm{Bi}^{5+}\right)$ shown in figure 1, and between Bi^{3+} and Bi^{5+} in $\mathrm{Ag}_{25} \mathrm{Bi}_{3} \mathrm{O}_{18}$. These include a significant peak A and lower energies for peaks B and C in Bi 2 relative to Bi 1 . This result provides evidence that Bi 2 is most likely to be Bi^{5+}. This conclusion in fact reflects nothing but the fact that the $\mathrm{Bi} 2-\mathrm{O}$ bond distance is much shorter than that of Bi1-O.

We also noted that the Bi_{3} edge XANES is very broad, probably due to the short core hole lifetime. The natural width of the Bi_{3} level is about 6 eV [40]. Unlike for the relatively light elements, such as for V and Ti_{23} edges in different V and Ti oxides [22, 23], the differences in the $\mathrm{Bi} \mathrm{L}_{3}$ XANES are thus not drastic in the formal valence forms of Bi^{3+} and Bi^{5+}. The change of Bi_{3} XANES induced by the change of the local structure alone cannot be distinguished from the change induced by the different formal valence state (figure 5).

4. Conclusion

These simulations confirm that the XANES of the $\mathrm{Bi} \mathrm{L}_{3}$ edge is sensitive to the ionicity of $\mathrm{Bi}\left(\mathrm{Bi}^{3+}\right.$ or $\left.\mathrm{Bi}^{5+}\right)$, and can indeed be used to distinguish these two states. It is also found that the formal valence of Bi is correlated with its local structure: the $\mathrm{Bi}^{5+}-\mathrm{O}$ bond distance is shorter than the $\mathrm{Bi}^{3+}-\mathrm{O}$ bond distance. Therefore the XANES shape can equally better be interpreted as resulting from the change in bond distance and coordination associated with these two atomic configurations. However, even though the formal valence of Bi remains unchanged, small variations in bond distance and coordination can significantly alter the density of states of
valence electrons, and thus the XANES of the $\mathrm{Bi} \mathrm{L}_{3}$ edge. It is therefore preferable to describe the spectra in terms of the local structure around Bi , rather than the formal valence charge of Bi .

Acknowledgment

This work was supported by NSF DMR0603993.

References

[1] Cox D E and Sleight A W 1979 Acta Crystallogr. B 351
[2] Sato H, Tajima S, Takagi H and Uchide S 1989 Nature 338241
[3] Meng X, Qiu J, Peng M, Chen D, Zhao Q, Jiang X and Zhu C 2005 Opt. Express 131628 Meng X, Qiu J, Peng M, Chen D, Zhao Q, Jiang X and Zhu C 2005 Opt. Express 131635
[4] Heald S M, DiMarzio D, Croft M, Hegde M S, Li S and Greenblatt M 1989 Phys. Rev. B 408828
[5] Boyce J B, Bridges F G, Claeson T, Geballe T H and Remeika J M 1990 Phys. Rev. B 416306
[6] Salem-Sugui S Jr, Alp E E, Mini S M, Ramanathan M, Campuzano J C, Jennings G, Faiz M, Pei S, Dabrowski B, Zheng Y, Richards D R and Hinks D G 1991 Phys. Rev. B 435511
[7] Li S, Greenblatt M, Jeon Y, Chen J, Liang G and Croft M 1991 Physica C 173239
[8] Akhtart Z N, Akhtart M J and Catlow C R A 1993 J. Phys.: Condens. Matter 52643
[9] Guyot H, Filippini Cl and Marcus J 1993 J. Alloys Compounds 195543
[10] Liang G, Sahiner A, Croft M, Xu W, Xiang X D, Badresingh D, Li W, Chen J, Peng J, Zettl A and Lu F 1993 Phys. Rev. B 471029
[11] Pham A Q, Studer F, Merrien N, Maignan A, Michel C and Raveau B 1993 Phys. Rev. B 481249
[12] Faiz M, Jennings G, Campuzan J C, Alp E E, Yao J M, Saldin D K and Yu J 1994 Phys. Rev. B 506370
[13] Demourgues A, Dussarrat C, Bontcher R, Darriet B, Weill F and Darriet J 1995 Nucl. Instrum. Methods Phys. Res. B 9782
[14] Studer F, Pelloquin D, Maignan A, Michel C, Hervieu M and Raveau B 1995 Physica C 2421
[15] Pelloquin D, Michel C, Hervieu M, Studer F and Raveau B 1996 Physica C 257195
[16] Kim D K, Choy J H, Osada M, Kalihana M and Yoshimura M 1998 Solid State Ion. 108291
[17] Mizoguchi H, Hosono H, Kawazoe H, Yasukawa M, Fujitsu S and Fukumi K 1999 Mater. Res. Bull. 34373
[18] Choy J H, Hwang S J and Lee W 1999 J. Solid State Chem. 142199
[19] Allix M, Pelloquin D, Studer F, Nguyen N, Wahl A, Maignan A and Raveau B 2002 J. Solid State Chem. 16748
[20] Baranov A N, Kim J S, Kim D C, Suh D S, Park Y W and Antipov E V 2002 Physica C 38395
[21] Liang G, Yao Q, Zhou S and Katz D 2005 Physica C 424107
[22] Chen J G 1997 Surf. Sci. Rep. 301
[23] Leapman R D, Grunes L A and Fejes P L 1982 Phys. Rev. B 26614
[24] Garvie L A J, Craven A J and Brydson R 1995 Am. Mineral. 801132
[25] Fleet M E and Muthupari S 2000 Am. Mineral. 851009
[26] Jiang N and Spence J C H 2004 Phys. Rev. B 70184113
[27] Ankudinov A L, Ravel B, Rehr J J and Conradson S D 1998 Phys. Rev. B 587565
[28] von Barth U and Lundqvist S 1972 J. Phys. C: Solid State Phys. 51629
[29] Hedin L and Lundqvist S 1969 Solid State Phys. 231
[30] Medernach J W and Snyder R L 1978 J. Am. Ceram. Soc. 61494
[31] Harwig H A 1978 Z. Anorg. Allg. Chem. 444151
[32] Kumada N and Kinomura N 1999 Mater. Res. Soc. Symp. Proc. 547227
[33] Malmros G 1970 Acta Chem. Scand. 24384
[34] Blower S K and Greaves C 1988 Acta Crystallogr. C 44587
[35] Kumada N, Kinomura N and Sleight A W 2000 Mater. Res. Bull. 352397
[36] Bortz M and Jansen M 1991 Angew. Chem. Int. Edn Engl. 30883 Bortz M and Jansen M 1992 Anorg. Allg. Chem. 612113
[37] Jiang N and Spence J C H 2004 Phys. Rev. B 70014112 Jiang N, Jiang B, Erni R, Browning N D and Spence J C H 2006 Ultramicroscopy 106123
[38] Natoli C R 1983 EXAFS and Near Edge Structure ed A Bianconi et al (New York: Springer) p 43
[39] Craig D C and Stephenson N C 1975 J. Solid State Chem. 151
[40] Krause M O and Oliver J H 1979 J. Phys. Chem. Ref. Data 8329

